SESAR SOLUTION PJ01-06 SPR/INTEROP-OSED FOR V3 - PART IV - HUMAN PERFORMANCE ASSESSMENT REPORT

SESAR Solution PJ01-06 SPR/INTEROP-OSED for V3 - Part IV - Human Performance Assessment Report

DeliverableID	D5.1.010
Dissemination Level:	PU
ProjectAcronym	PJ.01 EAD
Grant:	731864
Call:	H2020-SESAR-2015-2
Topic:	Enhanced Arrivals and Departures
Consortium coordinator:	NATS
Edition date:	20 September 2019
Edition:	00.02.00
Template Edition	02.00.01

Authoring & Approval

Authors of the document		
Name/Beneficiary	Position/Title	Date
Thierry Ganille	Engineer	15/07/2019

Reviewers internal to the project

Name/Beneficiary	Position/Title	Date
Ana Paz Goncalves Martins	Solution member	09/07/2019
Thomas Lueken	Solution Lead	18/07/19

Approved for submission to the SJU By - Representatives of beneficiaries involved in the project

Name/Beneficiary	Position/Title	Date
Thomas Lueken	Solution Lead	05/09/19

Rejected By - Representatives of beneficiaries involved in the project

Name/Beneficiary	Position/Title	Date

Document History

Edition	Date	Status	Author	Justification
00.00.01	20/06/2019	First draft	Thierry Ganille	
00.01.00	15/07/2019	Final version	Thierry Ganille	
00.02.00	20/09/2019	Minor modifications for 2 nd version	Thomas Lueken	

Copyright Statement

© – 2019 DLR (AT-One), THALES, AIRBUS. All rights reserved. Licensed to the SJU under conditions. Copyright Statement

PJ.01 EAD

PJ01 EAD - ENHANCED ARRIVALS AND DEPARTURES

This Human Performance Assessment Report V3 is part of a project that has received funding from the SESAR Joint Undertaking under grant agreement No 731864 under European Union's Horizon 2020 research and innovation programme.

Abstract

This document contains the Human Performance (HP) assessment report for the PJ.01-06 which consists of the HP assessment plan, the results of the HP activities conducted according to the HP assessment process, newly identified issues and the HP recommendations & requirements. It corresponds to the completion of the four steps of the Human Performance assessment process, namely: Step 1 – Understand the concept: Baseline, Solution and Assumptions, Step 2 – Understand the Human Performance Implications, Step 3 – Improve and Validate the concept and Step4 – Collate findings & conclude on transition to next V-phase.

Table of Contents

	Abstra	ct 3		
1	Exe	ecutive Summary		
2	Intr	oduction7		
	2.1	Purpose of the document7		
	2.2	Intended readership		
	2.3	Scope of the document		
	2.4	Human performance work schedule within the Solution7		
	2.5	Structure of the document7		
	2.6	Acronyms and Terminology		
3	The	Human Performance Assessment Process: Objective and Approach		
4	Hun	nan Performance Assessment		
	4.1	Step 1 Understand the ATM concept		
	4.2	Step 2 Understand the HP implications		
	4.3	Step 3 Improve and validate the concept15		
	4.4	Step 4 Collate findings & conclude on transition to next V-phase		
5	Refe	erences		
A	ppendi	x A – Additional HP activities conducted		
A	ppendi	x B – HP Recommendations Register		
A	ppendi	x C – HP Requirements Register		
A	ppendi	x D – HP Log		

List of Tables

Table 1: Acronyms and terminology	9
Table 2: Description of the change	15
Table 3: Table of proposed HP activities and their priority	16
Table 4: Description of Activity 1- Simulator flight trials	17
Table 5: Description of Activity 2- Real flight trials	17
Table 6: Description of Activity 3- Real flight trials	18

Table 7: Summary of the HP results and recommendations/ requirements for each identified issue related argument 2	
Table 8: Maturity checklist for finalising the V3 assessment	27
Table 9: HP recommendations 3	32
Table 10: HP Requirements	34

List of Figures

Figure 1: Steps of the HP a	assessment process	. 11
-----------------------------	--------------------	------

1 Executive Summary

This document contains the Human Performance (HP) assessment report that presents the results of the activities conducted according to the SESAR Human Performance (HP) assessment process applied on the advanced PinS procedures for rotorcraft solution worked within PJ 06.01. The solution is based on the use of an Helmet Mounted Display to manually fly as well as autopilot coupling to automatically fly PinS procedures with curved segments.

The SESAR HP assessment process provides a framework to help ensure that HP aspects related to SESAR technical and operational developments are systematically identified and managed in the concept design, development and validation process. The SESAR HP assessment process uses an 'argument' and 'evidence' approach. A HP argument is a 'HP claim that needs to be proven'. The aim of the HP assessment is to provide the necessary 'evidence' to show that the HP arguments impacted have been considered and satisfied by the HP assessment process. This includes the identification of HP requirements and recommendations to support the design and development of the concept.

Level of maturity of the concept at the start of the HP assessment is considered to be V3. As an on board technical solution, it has been stated that no changes on ATM actors or procedures would result from the introduction of the advanced PinS procedure concept. Five HP arguments that needed to be considered and satisfied in the HP assessment were identified in HP assessment plan.

Specific HP issues and benefits relating to the advanced PinS procedure concept for each of the relevant arguments have been identified by performing HP issue and benefit brainstorming sessions / interviews with relevant stakeholders including pilots, engineers, safety and HF experts.

Based on the HP arguments and issues / benefits identified, three HP activities were recommended and realised:

- Advanced PinS flight simulator trials (EXE-01.06-V3-VALP-001)
- Advanced PinS real flight trials (EXE-01.06-V3-VALP-002)
- Advanced PinS real flight trials (EXE-01.06-V3-VALP-003)

The results from these three exercises were satisfying for the HP assessment and allowed to obtained evidences relating to all the issues / benefits identified end to close it all.

Four recommendations and two requirements were derived from the HP assessment process.

2 Introduction

2.1 Purpose of the document

The purpose of this document is to describe the result of the activities conducted according to the Human Performance (HP) assessment process [2] in order to derive the HP assessment report for PJ.01-06 including requirements and recommendations.

2.2 Intended readership

The intended audience for this document are the other team members of the SESAR Solution PJ.01-06 under investigation.

HP practitioners at the level of the transversal areas and federating projects are also expected to have an interest in this document.

2.3 Scope of the document

The scope of the document is to present the result for Human Performance Assessment activities of the solution PJ.01-06.

2.4 Human performance work schedule within the Solution

The Human Performance Assessment for the PJ.01-06 was conducted according to the Validation Plan without any deviation.

2.5 Structure of the document

- §1 provides an executive summary
- §2 (this section) introduces the document
- §3 describes the objective and approach to the four stages of the SESAR Human Performance Assessment Process
- §4 describes the HP assessment by reminding the solution concept and deriving its HP implications
- §5 lists the documents referenced in this document
- Appendix A gives the additional HP activities conducted
- Appendix B gives the HP Recommendations Register
- Appendix C gives the HP Requirements Register
- Appendix D includes the HP log file

2.6 Acronyms and Terminology

Term	Description
Human Factors (HF)	HF is used to denote aspects that influence a human's capability to accomplish tasks and meet job requirements. These can be external to the human (e.g. light & noise conditions at the work place) or internal (e.g. fatigue). In this way, "Human Factors" can be considered as <i>focussing on the variables that determine Human Performance</i> .
Human Performance (HP)	HP is used to denote the human capability to successfully accomplish tasks and meet job requirements. In this way, "Human Performance" can be considered <i>as</i> <i>focussing on the observable result of human activity in a work context</i> . Human Performance is a function of Human Factors (see above). It also depends on aspects related to Recruitment, Training, Competence, and Staffing (RTCS) as well as Social Factors and Change Management.
HP activity	An HP activity is an evidence-gathering activity carried out as part of Step 3 of the HP assessment process. An HP activity can relate to, among others, task analyses, cognitive walkthroughs, and experimental studies.
HP argument	An HP argument is an HP claim that needs to be proven through the HP Assessment Process.
HP assessment	An HP assessment is the documented result of applying the HP assessment process to the SESAR Solution-level. HP assessments provide the input for the HP case.
HP assessment process	The HP assessment process is the process by which HP aspects related to the proposed changes in SESAR are identified and addressed. The development of this process constitutes the scope of Project 16.04.01. It covers the conduct of HP assessments on the Solution-level as well as the HP case building over larger clusters of Solutions.
HP benefit	An HP benefit relates to those aspects of the proposed ATM concept that are likely to have a positive impact on human performance.
HP case	An HP case is the documented result of combining HP assessments from Solutions into larger clusters (SESAR Projects, deployment packages) in SESAR.
HP issue	An HP issue relates to those aspects in the ATM concept that need to be resolved before the proposed change can deliver the intended positive effects on Human Performance.
HP impact	An HP impact relates to the effect of the proposed solution on the human operator. Impacts can be positive (i.e. leading to an increase in Human Performance) or negative (leading to a decrease in Human Performance).

HP recommendations	HP recommendations propose means for mitigating HP issues related to a specific operational or technical change. HF recommendations are proposals that require additional analysis (i.e. refinement and validation). Once this additional analysis is performed, HF recommendations may be transformed into HF requirements.
HP requirements	HP requirements are statements that specify required characteristics of a solution from an HF point of view. HP requirements should be integrated into the DOD, OSED, SPR, or specifications. HF requirements can be seen as the stable result of the HF contribution to the Solution, leading to a redefinition of the operational concept or the specification of the technical solution.

Table 1: Acronyms and terminology

3 The Human Performance Assessment Process: Objective and Approach

The purpose of the HP assessment process described in detail in [2] is to ensure that HP aspects related to SESAR technical and operational developments are systematically identified and managed.

The SESAR HP assessment process uses an 'argument' and 'evidence' approach. A HP argument is a 'HP claim that needs to be proven'. The aim of the HP assessment is to provide the necessary 'evidence' to show that the HP arguments impacted have been considered and satisfied by the HP assessment process. This includes the identification of HP requirements and recommendations to support the design and development of the concept.

The HP assessment process is a four-step process that provides an overview of these four steps with the tasks to be carried out and the two main outputs (i.e. HP plan and HP assessment report In addition, a HP Log is maintained throughout the lifecycle of the Solution in which all the data/ information obtained from all HP activities conducted as part of the HP assessment is documented. This HP Log is a living document and is updated and / or added to as the Solution progresses.

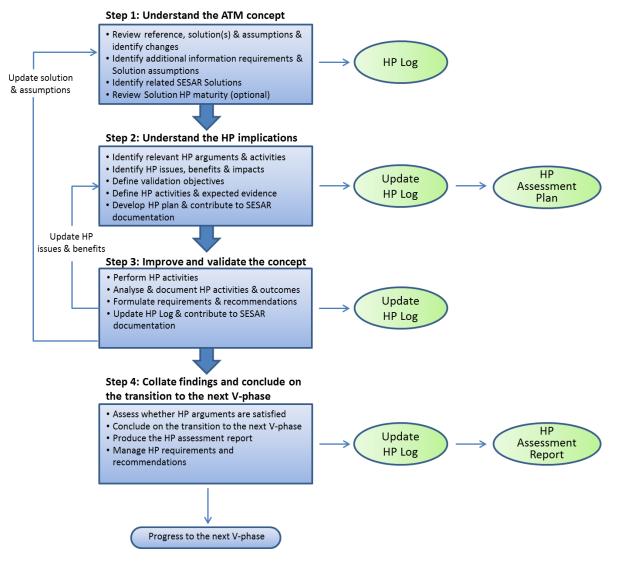


Figure 1: Steps of the HP assessment process

4 Human Performance Assessment

4.1 Step 1 Understand the ATM concept

4.1.1 Description of reference scenario

The reference scenario for project PJ01-06 is given in the SPR-INTEROP/OSED [6] section 3.3.1 and written again below:

Today, rotorcraft reach their best operational performances, when flying unconstrained in VFR flight rules, an operating mode really dependent upon weather conditions and visibility. During winter months this way to operate can be adversely affected, by foggy and cloudy weather conditions which can prevent rotorcraft to proceed VFR or make them subject to delays when operating to/from a controlled airspace (i.e: CTR) in a dense medium complexity ATM airspace

At present, there are many helicopters which are IFR certified and characterized by advanced avionic standards. Already today many helicopters are SBAS equipped and certified for RNP APCH operation down to LPV minima, which enables them to fly PinS LPV approaches. When these rotorcrafts are flying in IFR mode, due to the lack of rotorcraft specific procedures, they are used to fly the same instrument flight procedures designed for aircrafts.

Most of today procedures, being specifically designed for fixed-wing A/C, are constraining for rotorcraft implying important limitation on their operations as they have flight profiles which are not optimised for this category of operations. In particular rotorcraft categories have different needs and possibility in terms of descent rate and speed profile in order to optimise their performances.

Forcing them along the same SID/STAR (designed for fixed wing) can delay their operations to/from airports, and impact negatively the operations of commercial fixed-wing A/C, increasing also Air Traffic Controller workload.

In current operations arriving helicopters aiming for an instrument approach procedure are directed toward the instrument flight procedures available for runway (IFR landing location in an airport environment) often experiencing delay in order to avoid penalty to commercial IFR aircraft, since no tailored approach is available taking into account the different performances achievable by helicopters with respect to aircraft.

The current operating method offers the principle of the Point in Space (PinS) concept relying on the pilot's capability to perform an IFR approach toward a Point in Space and not directly to the FATO. Once the PinS has been reached, the pilot shall acquire visual references to proceed visually (or VFR) and land on the helipad (HP). If visual references cannot be acquired, a missed approach shall be executed. The main difference of PinS down to LNAV minima with direct CAT H criteria is the maximum glide path angle on the final IFR segment of the approach (from FAF to PinS), shall be up to 7.5° (13.2%) with a limitation of 90kt IAS on the initial and intermediate segment and 70 kt IAS on the final segment provided the course change at the FAF is less than or equal to 30°. With the new edition of PANS OPS from 2014, LPV final approaches for PinS procedures are allowed. To create the FAS datablock for PinS procedures, a fictitious heliport (FHP) is required. This FHP is located 800m from the PinS at the same height as the real heliport. All requirements for the FAS datablock are described in PANS OPS, 6th Edition of 2014, Volume 2, Section 2, Chapter 6

According PANS-OPS Pins LPV are currently allowed only when the intermediate segment is aligned with the final approach segment. Pins LPV can be designed with a glide path angle up to 6.3°

FAA AC20-138D defines the acceptable means to obtain airworthiness approval for RNP APCH down to LPV minima.

Availability of Low Level IFR routes and IFR access to helipads, thanks to Point-in-Space departure/approach procedures, should reduce VFR flights undertaken in marginal visibility conditions and make rotorcraft operations less dependent on the weather.

4.1.2 Description of solution scenario

The solution scenario for project PJ01-06 is given in the SPR-INTEROP/OSED [6] section 3.3.2 and written again below:

The rationale of the new operating Method is the coherent involvement in SESAR project of the need to properly consider all the possible air platform requirements in the development of the new ATM system allowing the correct integration of the rotorcraft element in the Single European Sky.

Tailored rotorcraft flightpath offers a vision of the benefits and challenges faced by European aviation community in meeting the future need of a sustainable mobility system. A future safe and efficient Air Traffic System (ATS) that respects the SESAR pillars of paramount importance in this field, allowing "smarter" flight operations than today: precise navigation and on-board systems not only will deliver benefits to commercial air transport, but also offer all-weather, 24/7 capacity to rotorcraft and aircraft capable of door-to-door operation with limited infrastructure. In this scenario, all types of rotorcraft are expected in the next future to perform simultaneous, non-interfering approach and departures to/from airports as part of international networks including VFR FATOs inside congested and densely populated areas but also secondary, remote infrastructure, complying with local noise regulations and operative constraints.

In the near future, satellite-based instrumental flight procedures will radically change the way Rotorcraft are operated, improving transportation inter-modality and both ATM and flight efficiency. The goal is a synchronised and predictable European ATM system, where partners and stakeholders are aware of the business and operational situations and collaborate to optimise the network. This first step initiates arrival time prioritisation together with wide use of data-link and the deployment of initial trajectory based operations, reflected in optimizing 2D/3D routes, moving then to 4D trajectory management.

The introduction of RNP will optimise route structures and automation. The Rotorcraft characteristic/needs and Airspace management needs can be matched by developing PBN based advanced PinS procedures and applying SNI concept at busy airports.

In this scenario the concept is addressing a new OI taking into consideration the existing rotorcraft needs in order to fulfil the SESAR gap into rotorcraft operations.

The incorporation of rotorcraft optimised 2D/3D routes (i.e: low level IFR routes) operations in a medium dense airspace reflected the necessity to insert a dedicated operational Improvement for the rotorcraft approaches procedures:

• Enhanced Rotorcraft Operations at VFR FATOs with specific Point-in-Space RNP procedures using satellite augmentation.

This rotorcraft operational improvement will facilitate the ability of the SESAR project to meet its stated aims like:

- To increase safety operational level
- To improve efficiency
- To reduce costs (due to more direct routing)
- To increase Airport/Heliport and Airspace capacity
- To improve access to Airport / Heliport
- To reduce the environmental impact of noise and pollution (i.e: reduce fuel burn, reducing flight and holding time)

A-RNP (also included in the new edition of PANS OPS from 2014) gives provisions for including RF legs in the initial and intermediate segments of an approach procedure. They are currently not specified for PinS-procedures specially tailored for helicopter operations. Their main advantage is a smoother transition onto the final segment where a turn at the FAF is needed which can be handy for obstacle avoidance and that they provide a non-varying segment length which facilitates continuous descent (thus smoother) approaches. They are defined by a radius to be flown and start and end points, thus unambiguously defining a turn, compared to a fly-by-turn at a single given waypoint.

4.1.3 Consolidated list of assumptions

The following assumptions relating to the Advanced PinS procedure solution for helicopters are listed below:

- SBAS service is mandatory to fly the Advanced PinS procedure
- Advanced PinS procedures have no impact on existing ATM procedures

4.1.4 List of related SESAR Solutions to be considered in the HP assessment

The solution worked out in the PJ01-06 is an on board technical solution without impact on existing ATM procedures. So at this step of the project, no relation with other SESAR solutions has been considered in the HP assessment. The dependency with PJ.02-06 doesn't generate additional interactions concerning the HP assessment.

4.1.5 Identification of the nature of the change

HP argument branch	Change & affected actors	
1. ROLES & RESPONSIBILITIES		Ī

	No change				
1.1 ROLES & RESPONSIBILITIES	No change				
1.2 OPERATING METHODS	The new procedures allows the helicopter pilot to capture the localizer later, to capture localizer and glide slope at the same location and to have shorter approach and departure segment possible.				
1.3 TASKS	No change				
2. Human & System	·				
2.1 ALLOCATION OF TASKS (HUMAN & SYSTEM)	No change				
2.2 PERFORMANCE OF TECHNICAL SYSTEM	No change				
2.3 HUMAN – MACHINE INTERFACE	For manual flight of advanced PinS procedure, the use of an helmet mounted device is envisaged. Otherwise, the procedure should be flown with an automatic piloting system.				
3. TEAMS & COMMUNICATION	·				
3.1 TEAM COMPOSITION	No change				
3.2 ALLOCATION OF TASKS	No change				
3.3 COMMUNICATION	No change				
4. HP RELATED TRANSITION FACTORS	·				
4.1 ACCEPTANCE & JOB SATISFACTION	No change				
4.2 COMPETENCE REQUIREMENTS	No change				
4.3 STAFFING REQUIREMENTS & STAFFING LEVELS	No change				
Table 2. Description of the showes					

Table 2: Description of the change

4.2 Step 2 Understand the HP implications

4.2.1 Identification of relevant arguments, HP issues & benefits and HP activities

The HP activities were conducted according to the plan (see Table 3: HP Arguments, related HP issues and benefits, and proposed HP activity in the HP validation plan).

4.3 Step 3 Improve and validate the concept

4.3.1 Description of HP activities conducted

HP activity	By when
Simulator flight trials	July 2018
Real flight trials	December 2018
Real flight trials	November 2018 and February 2019

Table 3: Table of proposed HP activities and their priority

Αςτινιτγ 1.	SIMULATOR FLIGHT TRIALS
Description	Simulator flight trials of two different specifically designed PinS procedures with curved segments
Arguments & issues to	Arg. 1.2.5 / A1.2.5-01.06-V3-HP(I)-001
be addressed	Arg. 1.2.5 / A1.2.5-01.06-V3-HP(I)-003
	Arg. 2.3.1 / A2.2.1-01.06-V3-HP(B)-004
	Arg. 2.3.6 / A2.3.6-01.06-V3-HP(I)-006
	Arg. 2.3.8 / A2.3.8-01.06-V3-HP(B)-007
HP objectives	HP-OBJ-01.06-V3-VALP004-HP(I)-003
	HP-OBJ-01.06-V3-VALP002-HP(B)-004
	HP-OBJ-01.06-V3-VALP005-HP(I)-006
	HP-OBJ-01.06-V3-VALP006-HP(B)-007
Tools / Methods	Situation Awareness Rating Technique (SART 10)
selected out of the hp repository	NASA TLX questionnaire
	Debriefing questionnaire
Summary of the hp	The RTS ought to provide evidence of operability and feasibility of the
activity	advanced PinS processes and procedures by mainly collecting feedback of
	the flight crews in comparison with the flight technical error recorded. The results have to reflect the impact on the KPAs as well as show a feasible way

for implementing the solution.

Table 4: Description of Activity 1- Simulator flight trials

ACTIVITY 2.	Real flight trials
Description	Real flight trials of a specifically designed PinS procedures with curved segments in EDVE
Arguments & issues to	Arg. 1.2.5 / A1.2.5-01.06-V3-HP(I)-001
be addressed	Arg. 1.2.5 / A1.2.5-01.06-V3-HP(I)-003
	Arg. 2.3.1 / A2.2.1-01.06-V3-HP(B)-004
	Arg. 2.3.6 / A2.3.6-01.06-V3-HP(I)-006
	Arg. 2.3.8 / A2.3.8-01.06-V3-HP(B)-007
HP objectives	HP-OBJ-01.06-V3-VALP001-HP(I)-001
	HP-OBJ-01.06-V3-VALP004-HP(I)-003
	HP-OBJ-01.06-V3-VALP002-HP(B)-004
	HP-OBJ-01.06-V3-VALP005-HP(I)-006
	HP-OBJ-01.06-V3-VALP006-HP(B)-007
Tools / Methods	Situation Awareness Rating Technique (SART 10)
selected out of the hp repository	NASA TLX questionnaire
	Debriefing questionnaire
Summary of the hp activity	The Operational Trial ought to provide evidence of operability and feasibility of the advanced PinS processes and procedures by mainly collecting feedback of the flight crews in comparison with the flight technical error recorded. The results have to reflect the impact on the KPAs as well as show a feasible way for implementing the solution.

Table 5: Description of Activity 2- Real flight trials

Астіvіту 3.

Real flight trials

Description	Real flight trials of a specifically designed PinS procedures with curved segments in Donauwörth
Arguments & issues to be addressed	Arg. 1.2.5 / A1.2.5-01.06-V3-HP(I)-002 Arg. 2.3.1 / A2.3.1-01.06-V3-HP(I)005
HP objectives	HP-OBJ-01.06-V3-VALP001-HP(I)-002 HP-OBJ-01.06-V3-VALP003-HP(I)-005
Tools / Methods selected out of the hp repository	Situation Awareness Rating Technique (SART 10) NASA TLX questionnaire Debriefing questionnaire
Summary of the hp activity	The validation objectives include an assessment of operability, feasibility and pilot's perspective of advanced PinS procedures to VFR FATOs. The success criteria include flight technical error, pilot workload and situation awareness for the approach procedure.

Table 6: Description of Activity 3- Real flight trials

SESAR SOLUTION PJ01-06 SPR/INTEROP-OSED FOR V3 - PART IV - HUMAN PERFORMANCE ASSESSMENT REPORT

- 4.4 Step 4 Collate findings & conclude on transition to next V-phase
- 4.4.1 Summary of HP activities results & recommendations / requirements

 Issue ID
 HP issue / Benefit
 HP/ Valid. Valid.
 activity conducted
 results / evidence
 recommendations
 requirements

 Arg. 1.2.5: Operating methods can be followed in an accurate, efficient and timely manner.
 Activity conducted
 results / evidence
 recommendations
 requirements

A1.2.5-	An RF leg	Closed	HP-OBJ-	Real Time	Both Real Time	It is recommended to	A guidance symbology
01.06-	ending at the		01.06-V3-	Simulation,	Simulation and flight	implement an HWD	shall be displayed on the
V3-	start of LPV		VALP001-		Operational trial have	guidance symbology to	HMD if any to allow
HP(I)-	combines the		HP(I)-001	Operational Trial	shown that the HMD	manually fly advanced	manual flight of an
001	interception				advanced symbology	PinS procedure with RF	advanced PinS procedure.
	of localizer				allows the pilot to	legs.	
	and glideslope				manually fly an		
	at the same				advanced PinS		
	location.				procedure without		
	Departure and				introducing a higher		
	approach				workload neither a		
	segment can				time pressure. See		
	be designed				validation report PJ.01-		
	much shorter.				06 D5.1.030.		
	For pilots this						
	could						
	introduce a						
	higher						
	workload and						

SESAR SOLUTION PJ01-06 SPR/INTEROP-OSED FOR V3 - PART IV - HUMAN PERFORMANCE ASSESSMENT REPORT

time press especially manual flig	/ in			
and glides at the s location. Departure approach segment	t the LPV s the ion calizer eslope same e and can igned orter. s this e a l and essure	HP-OBJ- 01.06-V3- VALP001- HP(I)-002	Flight Operational trial at Donauwoerth has shown that the automatic pilot allows to fly an advanced PinS procedure without introducing a higher workload neither a time pressure. See validation report PJ.01- 06 D5.1.030.	functions, together with autopilot coupling, during standard/advanced PinS procedures in

A1.2.5-	Advanced PinS	Closed	HP-OBJ-	Real Time	Both Real Time	It is recommended to	A guidance symbology
01.06-	procedures		01.06-V3-	Simulation,	Simulation and flight	implement an HWD	shall be displayed on the
V3-	introduce RF		VALP004-		Operational trial have	guidance symbology to	HMD if any to allow
HP(I)-	legs with a low		HP(I)-003	Operational Trial	shown that the HMD	manually fly advanced	manual flight of an
003	position error				advanced symbology	PinS procedure with RF	advanced PinS procedure.
	margin,				allows the pilot to	legs.	
	vertically as				manually fly an		
	well as				advanced PinS		
	laterally. For				procedure without		
	pilots, this				introducing a higher		
	could				workload. See		
	introduce an				validation report PJ.01-		
	high workload				06 D5.1.030.		
	in manual						
	flight.						

Arg. 2.3.1: The type of information provided satisfies the information requirements of the human.

A2.2.1-	In manual	Closed	HP-OBJ-	Real Time	Both Real T	Гime	It is recommended to	A guidance symbology
01.06-	flight with		01.06-V3-	Simulation,	Simulation and f	light	implement an HWD	shall be displayed on the
V3-	high precision		VALP002-		Operational trial h	have	guidance symbology to	HMD if any to allow
HP(I)005	needs pilot		HP(B)-004	Operational Trial	shown that the F	HMD	manually fly advanced	manual flight of an
	ought to plan				advanced symbo	logy	PinS procedure with RF	advanced PinS procedure.
	thier actions				allows the pilot	to	legs.	
	accuratly.				manually fly	an		Surounding air traffic shall
	Advanced				advanced	PinS		
	display				procedure ur	nder	traffic display on the	any for pilot situation

SESAR SOLUTION PJ01-06 SPR/INTEROP-OSED FOR V3 - PART IV - HUMAN PERFORMANCE ASSESSMENT REPORT

				:	-		
	formats can				multiple weather	HMD is a strong	awareness.
	assist this				conditions. 2 different	recommendation for	
	process and				designs have been	pilot situation awareness.	
	therefore				tested, an advanced		
	serve as				flight director concept		
	enable for				allowing an anticipation		
	manual flight.				of the next change in		
					the flight trajectory,		
					and a conformal 3D		
					display of the route to		
					fly.		
					A slight advantage has		
					been shown in favour		
					of the advanced flight		
					director concept		
					regarding the trajectory		
					flight precision and the		
					workload level. See		
					validation report PJ.01-		
					06 D5.1.030.		
			HP-OBJ-	On a notice of Trial			
A2.2.1-	In automated	Closed	HP-OBJ- 01.06-V3-	Operational Trial	Flight Operational trial		
01.06-	flight with		VALP003-		at Donauwoerth has	functions, together with	
V3-	high precision		HP(I)-005		shown that the	autopilot coupling,	
HP(I)005	needs, pilot				automatic pilot allows	during	
	ought to				to fly an advanced PinS	standard/advanced PinS	

SESAR SOLUTION PJ01-06 SPR/INTEROP-OSED FOR V3 - PART IV - HUMAN PERFORMANCE ASSESSMENT REPORT

anticipate the systemsprocedurewithoutproceduresinactions aheadinterferingwith the pilotsuncontrolledairspacesof time. The complexity ofinterferingwithoutgreater depth.
an advanced PinS procedure can interfere with the pilots ability to anticipate system reactions and impact situational awareness.
awareness.

Arg. 2.3.6: The usability of the user interface (input devices, visual displays/output devices, alarm& alerts) is acceptable. [V1: AIR only]

A2.3.6-	The Helmet	Closed	HP-OBJ-	Real Time	Questionnaire's results
01.06-	Mounted		01.06-V3-	Simulation,	of the flight trial have
V3-	Display might		VALP005-		shown that neither
HP(I)-	bring		HP(I)-006	Operational Trial	visual nor wearing
006	discomfort for				discomfort was induced
	the pilot after				by the HMD. See
	several				validation report PJ.01-

minutes of		06 D5.1.030.	
use.			

Arg. 2.3.8: The user interface supports a sufficient level of individual situation awareness. [V1: AIR only]

A2.3.8-	Piloting	Closed	HP-OBJ-	Real Time	SART results of the Real	It is recommended to	A guidance symbology
01.06-	guidance using		01.06-V3-	Simulation,	Time Simulation	implement an HWD	shall be displayed on the
V3- HP(B)- 007	an HMD enhances the pilot's situational awareness particularly regarding aircraft position relatively to the vertical and horizontal offsets to the required trajectory.		VALP006- HP(B)-007	Operational Trial	exercise show a huge improvement of the pilots' situation awareness with both HMD symbology compare with the head down CDI solution. See validation report PJ.01- 06 D5.1.030.	guidance symbology to manually fly advanced PinS procedure with RF	HMD if any to allow manual flight of an

Table 7: Summary of the HP results and recommendations/ requirements for each identified issue & related argument

Maturity checklist for finalising the V3 assessment ID Question **Comments** Answer Has a Human Performance Assessment ΗP assessment completed. report Report been completed? Have all 1 Yes All relevant arguments have been adressed. relevant arguments been addressed See HP assessment report §4.4.1. and appropriately supported? 2 different flight trial exercises have been Are the benefits and issues in terms of successfully conducted in order to assess a V3 human performance and operability maturity level. 2 related to the proposed solution Yes HP assessment report §4.4.1. lists the arguments sufficiently assessed (i.e. on the level addressed and associated evidence, identified HP required for V3)? benefits and issues as well as outcomes of the validation exercises. See HP assessment report §4.1.1, §4.1.2, §4.1.3 and §4.4.1 for: - Description of the solution/concept and related Have all the parts of the assumption 3 Yes List of assumption that have a link with the HP solution/concept been considered? issue/benefits List of issues/benefits and associated validation objectives The dependency with PJ.02-05 doesn't generate Have potential interactions with related projects/concepts been considered and additional interactions concerning the HP 4 Yes addressed? assessment. Is the level of human performance Both flight trials demonstrated that the level of hp needed to achieve the desired system 5 needed is consistent with human capabilities. See Yes performance for the proposed solution validation report for detailed results. consistent with human capabilities? Are the assessments results in line with what is targeted for that concept? If not, Assessments results allowed to close all hp issues 6 has the impact on the overall strategic Yes identified. See HP table "Issue-Objective-Outcome" tab. performance objectives/targets been analysed? Has the proposed solution been tested 2 flight trials exercises were conducted, including with end-users and under sufficiently 7 Yes some flights with degraded conditions. See realistic conditions, including abnormal validation report annexes for details. and degraded conditions?

4.4.2 Maturity of the Solution

8	Do validation results confirm that the interactions between human and technology are operationally feasible, and consistent with agreed human performance requirements?	Yes	The 2 flight trials have confirmed this point. See validation report annexes for details.
9	Have all relevant SESAR documentation been updated according to the HP activities outcomes (OSED, SPR)?	Yes	HP table consistent with last version of OSED and SPR.
10	Do the outcomes satisfy the HP issues/benefits in order to reach the expected KPA?		HP assessment activities outcomes allowed to close all identified HP issues. See HP table "Issue- Objective-Outcome" tab.
11	Have HP recommendations and HP requirements correctly been considered in HMI design, procedures/documentation and training?	Yes	The HMI design satisfies the HP recommendations and requirements.
12	Have the major factors that can influence the transition feasibility (e.g. changes in competence requirements, recruitment and selection, training needs, staffing requirements, and relocation of the workforce) been addressed? Are there any ideas on how to overcome any issues?	Yes	No transition feasibility issues identified.
13	Have any impacts been identified that may require changes to regulation in the area of HP/ATM? This includes changes in roles & responsibilities, competence requirements, or the task allocation between human & machine.	No	See HP table "Change&Argument Identification" tab.
14	Has the next V-phase sufficiently been prepared (additional testing conditions, open HP issues to be addressed)?	Yes	Recommendations for next phase have been written in VALR §5.2.

Table 8: Maturity checklist for finalising the V3 assessment

The solution's transition to the next V phase from an HP point of view is recommended.

5 References

Human Performance

- [1] 16.06 Strawman Paper on Case Building in SESAR SWP 16.6
- [2] 16.04.01 Evolution from the ATM HF case to a HP Case Methodology for SESAR, HP assessment process for projects in V1, V2 or V3. D10-001, 00.01.00
- [3] 06.09.03 D05.1 Single Remote Tower Validation Plan Appendix Human Performance Assessment Plan
- [4] 16.06.05 D 27 HP Reference Material D27
- [5] 16.04.02 D04 e-HP Repository Release note
- [6] D5.1.010 SESAR Solution PJ.01-06 SPR-INTEROP/OSED for V3 Part I

SESAR SOLUTION PJ01-06 SPR/INTEROP-OSED FOR V3 - PART IV - HUMAN PERFORMANCE ASSESSMENT REPORT

Appendix A – Additional HP activities conducted

No additional HP activities have been conducted.

Appendix B – HP Recommendations Register

			HP Recom	mendations	Register				
Reference	Type of recommendation	Recommendation	Rationale	Assessme nt source + Reference report	Scope (Air, Air/Ground , Ground)	Concept/ solution Involved	Recomme ndation status	Rationale in case of rejection	Comments
Adv- PinS_Design- Recom_1	System design	It is recommended to implement an HWD guidance symbology to manually fly advanced PinS procedure with RF legs.	Classical Head Down solution displaying vertical and horizontal deviations did not allow to fly manually an advanced PinS procedure with RF legs within the RNP 0.3 limit while both HWD proposed guidance symbologies did.	Validation report PJ.01-06 D5.1.030	Airborne	Advanced Point in Space (A- PinS) procedures	Accepted		

Adv- PinS_Design- Recom_2	System design	Integration of other air traffic display on the HMD is a strong recommendation for pilot situation awareness.	Executing PinS approaches in uncontrolled airspace, where ATC may have very limited or no coverage, requires the flight crew to be vigilant and responsible for adequate separation to other VFR traffic encountered in VMC.	Validation report PJ.01-06 D5.1.030	Airborne	Advanced Point in Space (A- PinS) procedures	Accepted	
Adv- PinS_Design- Recom_3	System design	Eyes-out pilot assistance functions, together with autopilot coupling, during standard/advanced PinS procedures in uncontrolled airspaces should be explored in greater depth.	Many helicopters, and almost all EMS helicopters, operate in uncontrolled airspaces. During PinS procedures in VMC and even VMC-IMC borderline conditions, it is common to encounter other VFR traffic during precision approaches. With no ATC coverage in uncontrolled airspaces, maintaining adequate separations becomes the	Validation report PJ.01-06 D5.1.030	Airborne	Advanced Point in Space (A- PinS) procedures	Accepted	

			responsibility of the pilot, which leads to higher workload.					
Adv- PinS_OPS- Recom_4	OPS (operating methods / procedures)	to investigate the flyability and human factors of approaches beyond PANS-OPS criteria with RF legs after the FAF and larger	always be possible to define PinS satisfying the PANS- OPS criteria. It may	Validation report PJ.01-06 D5.1.030	Airborne	Advanced Point in Space (A- PinS) procedures	Accepted	

Table 9: HP recommendations

Appendix C – HP Requirements Register

			ŀ	IP Requiremen	nts Register				
Reference	Type of requirement	Requirement	Rationale	Assessment source + Reference report if available	Scope (Air, Air/Ground, Ground)	Concept/ solution Involved	Requirement status	Rationale in case of rejection	Comments
Adv- PinS_Design- Req_1	System design	A guidance symbology shall be displayed on the HIMD if any to allow manual flight of an advanced PinS procedure.	Executing PinS procedures with RF legs requires a flight precision that usual deviations display doesn't allow. An HMD solution allows to provide an efficient guidance while maintaining external	Validation report PJ.01-06 D5.1.030	Airborne	Advanced Point in Space (A- PinS) procedures	Accepted		

			surveillance.					
Adv- PinS_Design- Req_2	System design	Surounding air traffic shall be displayed on the HMD if any for pilot situation awareness.	PinS approaches in	Validation report PJ.01-06 D5.1.030	Airborne	Advanced Point in Space (A- PinS) procedures	Accepted	

Table 10: HP Requirements

SESAR SOLUTION PJ01-06 SPR/INTEROP-OSED FOR V3 - PART IV - HUMAN PERFORMANCE ASSESSMENT REPORT

Appendix D – HP Log

HP Assessment Process for V1 to V3_

SESAR SOLUTION PJ01-06 SPR/INTEROP-OSED FOR V3 - PART IV - HUMAN PERFORMANCE ASSESSMENT REPORT

-END OF DOCUMENT-